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I. INTRODUCT tON

An approximate asymptotic high frequency solution is developed for the
field exterior to a smooth, perfectly conducting convex surface when it is
excited by a ray optical electromagnetic field. In the conventional GTD
solution to this problem, the total field exterior to a surface is associated
with the usual geometrical optics (GO) incident and reflected rays in the
1it (or illuminated) region; whereas, in the shadow region it is associated
entirely with the surface diffracted rays* introduced by Keller [1,2,3].
These rays are illustrated in Figure 1 together with the regions labeled
I, II, III and V which divide the space exterior to the convex surface as
follows. The shaded region II constitutes the transition region adjacent
to the shadow boundary (SB of Figure 1) which divides the space exterior
to the scatterer into the 1it and shadow zones. The angular extent of

/3 radians, where k is the wave-

region I1 is of the order of (2/kpg(Q]))
number of the homogeneous, isotropic medium exterior to the convex surface,
and pg(Q1) is the radius of curvature of the convex surface, in the plane
containing the incident ray and the surface normal. The point of grazing
incidence is specified by Q]. The sub regions IV and VI in the shadow and
1it zones, respectively, denote those portions of region II which are ex-
tremely close to the surface. In particular, regions IV and V are close

to the portion of the surface which is a caustic of the surface diffracted
rays; whereas, region VI is in the vicinity of Q] which is a caustic of the
reflected ray for grazing incidence. Thus, regions IV, V and VI are commonly

referred to as the caustic or surface boundary layer regions. The GTD is

valid in regions I and III, but it fails in regions II and V.

*The surface diffracted rays are in general present even in the illuminated

region if the surface is closed. 1
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Figure 1. The rays and regions associated with scattering by
a smooth convex cylinder.
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An asymptotic analysis for the fields in regions II and V is compli-

cated due to the fact that the asymptotic character of the field changes
continuously but rapidly from one form to another across each of these re-
gions. In this paper, an approximate uniform GTD (or UGTD) solution is de-
veloped which remains valid in regions I, III and the portion of region II
which lies outside the sub regions IV and VI. An approximate asymptotic
solution which is valid within the caustic boundary laver regions IV, V and
VI is not considered in this work; it will be reported separately in the
future.

The present ansatz or formulation of the uniform GTD solution is based
on an asymptotic solution recently obtained bv Pathak [ 41 for the canonical
problem of plane wave scattering by a perfectly conducting circular cylinder.
The work in[ 4] extends and improves some of our earlier work[ 5], and like
most other analyses dealing with the diffraction by convex surfaces, this
development draws upon the pioneering contributions of Fock[ 6]. The sim-
ilarities and differences between the solution of the canonical problem in
{4] and some of the other solutions which currently exist in the literature
[7,8,9,10,11] are also discussed in [4]. The present ansatz based on the
form of the solution of the canonical problem in [4] leads to a uniform GTD
solution for an arbitrary convex surface which is convenient for engineering
applications.

It is assumed here that the incident electromagnetic fields may be
approximated locally by a quadratic ray pencil with a polarization which
is transverse to the incident ray direction. One notes that plane, cylind-
rical, conical, and spherical type incident wavefronts are simply special

cases of the arbitrary quadratic wavefront. It is further assumed in this

paper that the field point location and the caustics of the incident ray
3
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pencil are not in the close vicinity of the surface, and that the amplitude
of the incident ray optical field does not exhibit a rapid spatial variation
in the vicinity of the points of reflection and diffraction on the convex
surface. The details of this analysis are described in Sections II and III.
First, a brief review of the GTD solution for this general problem of the
scattering of an arbitrary ray optical electromagnetic field by a smooth,
perfectly-conducting convex surface is presented in Section Il for the sake
of completeness. A uniform GTD solution to this problem is developed next
in Section III. Several examples illustrating the usefulness and accuracy
of this uniform GTD solution are presented in Section IV.

II. THE GTD SOLUTION - A REVIEW

This review serves to introduce the GTD format and notation that will
he employed in the development of the uniform GTD solution.

The incident ray system which strikes the convex surface produces a
system of rays reflected from that surface, and the field of these incident
and reflected rays constitutes the usual geometrical optics (GO) field.

The reflected ray merges with the incident ray at grazing forming a shadow
houndary which divides the space exterior to the convex surface into the

1it and shadow regions, as shown in Figure 1. At grazing, the incident field
launches Keller's surface rays which propagate along geodesic paths on the
convex surface while continually shedding energy via diffraction along the
forward tangents to the surface ray paths. The field of these rays which

are shed (or diffracted) from the surface is known as the surface diffracted
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field. The GO field is zero within the shadow region behind the obstacle;
thus, the field within the shadow zone is produced entirely by the surface
diffracted rays. These surface diffracted rays may also be present in the
1it region if the surface of the obstacle is closed; however, this field
is generally negligible compared to the GO field if the closed surface is
sufficiently large in terms of the wavelength.

The GO solution for the 1it region is briefly reviewed in part A of
this section. A brief review of the surface diffracted rav solution for
the shadow zone is presented next in part B. An exp(Jjpt) time dependence
is is assumed in this analysis.

A. The Geometrical Optics Field Solution for the Lit Region

Luneberg [12] and Kline [13] developed an asymptotic high frequency
solution of Maxwell's equations in which the fields are expanded in inverse
powers of the angular frequency, w. The leading term in this expansion is
regarded as the GO field. The details of such an expansicn are discussed
elsewhere [12,13,14,15] and are only summarized here. According to Luneberg
and Kline, the electric field intensity, E in a source free, homogeneous,

isotropic medium can be expressed for large w by

-jku(r)

E(rw)~ e j = , (1)
in which v is the position vector of the field point; k = w/c; and ¢ is the
speed of light in the given medium. The coefficients Fn(?) in the above
expansion are determined by substituting Equation (1) into the vector Helm-

holtz equation satisfied by E; namely, w? + kz) E = 0, and by equating like

e ———r =

!
é
§
!
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powers of w. This leads to the usual eikonal and transport equations; namely,
|vm|9 =1 and lvah + ey € = - szn_] (with E_, = 0), respectively.

The surfaces of constant ¥ are referred to as wavefronts, and the family

of all wavefronts describe a system of associated rays which are straight
lines in a homogeneous medium. The rays are everywhere orthogonal to the
wavefronts in an isotropic medium. Integrating the transport equation for

the n=0 case from some reference point'?o to the field point r, and expressing

this result in terms of the Gaussian curvatures of the wavefronts at Fb and

r yields the GO field:

R I o i,r i,r i,r
O R L (Y Py Py -3ks
E"(r). E* (r) e : : : ; e
0 o (pl'l,r + S1,r)(p;,r + sl,r)
(2)

The superscripts "i" and "r" refer to the incident and reflected GO fields,

respectively; thus,’fi is the incident GO field and T is the reflected GO
field. Note that pzfr and pi;r are the principal radii of curvatures of
the incident or reflected wavefront surface dAo at Fo’ and si’r is the distance
along the incident or reflected ray from Fo to r as shown in Figure 2.

Next, requiring v = 0 Teads to (s E1*" ) = 0, which implies that the

field in Equation (2) is polarizad transverse to the ray directions (si’r) as
shown in Figure 3. The quantity involving the square root in Equation (2)

is the ray divergence factor which indicates the manner in which the energy
spreads along the ray path; it is a consequence of the conservation of energy
in a ray tube (or pencil). From Maxwell's equation VxE = - jwuH, it follows

that the leading term in the Luneberg-Kline expansion for the corresponding
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Figure 2, Astigmatic tube of rays.
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magnetic field intensity is AT~ g1 Ydf"r in which T'»" is as given
in Equation (2), and YO is the characteristic admittance of the medium.

From the boundary condition ; X ﬂE’ + Fr] = 0 on the perfectly-conducting

surface, where 3 is the surface normal at the point of reflection QR as shown

in Figure 3, one obtains
E'(Qq) = E'(gy) - R . (3)

Thus, the reflected GO field is given in terms of the incident field at QR

das

r r
. _ o T
F'F) -Elg) ¢ R |2 ks (4)
(p7*s") (pg*s")
R=[Rge, e +R eren]; R =F1 (5a;5b)
h

where R is the dyadic reflection coefficient, and p;, o;, and s" are measured
with respect to the reference point'?o which is now moved to QR. Rs and

Rh are the acoustic soft and hard reflection coefficients, respectively.

The unit vector 81 in Equation (5a) is perpendicular to the plane of inci-
dence; whereas, the unit vectors g: and g: are in the plane of incidence

as shown in Figure 3. The principal radii of curvatures (o:,o;) of the re-
flected wavefront and their associated principal directions (ir’Qg) are de-

scribed in Reference [16]. The pq and p; as given in [16] are expressed

more compactly below:

-
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1 Pp pg(QR)cose Af CIR f oy o°
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1/2
gcos2a . 4p°(Q,)cos"0
0 . : if] 1 g R
. - sin2q sin2w cos® (p— ~o— |+ 1 - .
pg(TR) oo (Rl Rz) 2R R,
(6a)

where

R RV W A O RPN .
_{_,Z(_plﬂ_,‘ : 19 - 1-5%@ coso' . (6b;6¢)

The quantities p; and p; constitute the principal radii of curvatures of the
incident wavefront. In Equation (6a), o; and pg are evaluated at the point

of reflection QR on the surface. R.l and R2 constitute the principal radii of
curvatures of the surface at QR, and U] and U2 denote the corresponding
principal surface directions at QR. The radius of curvature of the surface at
OR is pg; it is measured in the plane of incidence which contains gi, ; and E,
where g‘is tangent to the surface. Also, Ot is the radius of curvature of the
surface at QR in the plane containing ; and the binormal vector G. The unit

~ ~ ~

vectors E, n, b, U] and 62 are shown in Figure 4a together with the angle

Wy between E and GZ' The unit vectors X:, X;, and the angle a, are shown
in Figure 4b. The angle of incidence, ei is defined by n'si =z - cosei = - n°s’.

It is noted that the GO representation of Equation (2) fails at caustics
which are the intersection of the paraxial rays (comprising the ray tube
or pencil) at the lines 1-2, and 3-4 as shown in Figure 2. Upon crossing
a caustic in the direction of propagation,(pi’r + si’r)chanqes sign under
the radical in Equation (2), and a phase jump of +u/2 results (for etiut
time dependence). Furthermore, the reflected GO field, E" of Equation (4)
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fails at and near grazing incidence. However, it is important to note that
near grazing incidence (91+n/2), pq and p; of Equation (6) approach the fcl-

lowing limiting values.

(Q )cos& .
SO . Siehi P S (7a;7b)

where ) ) .
Vp:) = (sinzao/p}) + (coszao/p;). (8)

and pg is the radius of curvature of the incident wavefront in the (E,G)
plane (i.e., in the plane tangent to the surface) at QR for ei¢v/2. Further-
more, the principal directions i; and f; of the reflected wavefront approach
the foilowing values for grazing incidence:

X sn(at Q) ;  Xb=(- ST xKT) b (at gp) . (9a;9b)
The 1imiting values in Equation (9a;b) are independent of o . The total

GO field, E at PL (see Figure 1) in the 1it region is the sum of the incident

and reflected GO ray fields; hence,

r r
_ . . _ Py O - r
E(p) ~E () +E(Q) <R [ B eIk (10)
\ (9]"‘5 )(02"'5 )
B. The Surface Diffracted Ray Field
Solution for the Shadow Region

The incident ray at grazing launches a set of surface rays which propa-
gate along a geodesic path on the convex surface thereby carrying energy
into the shadow region. The field associated with these surface rays attenuates

(i.e., decays exponentiallv) as they propagate due to a continuous shedding

11
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(diffraction) of rays along the forward tangents to the geodesic ray path,
as shown in Figure 5. An analysis of this surface diffracted field is dis-
cussed in detail elsewhere [1,2,15]; hence, only the essential features are
summarized here. Let B] and %] denote the unit normal and tangent vectors
at the point of grazing incidence, Q]; Tikewise, let ;2 and 22 denote the
unit normal and tangent vectors, respectively, at the point of tangential
shedding of the surface diffracted ray at 02. The diffracted ray pencil
possesses caustics at Q? and PC as seen in Figure 5; these caustics are the
same as those at 3-4 and 1-2 of the typical ray pencil in Figure 2, The
diffracted electric field Ed arriving at Ps may be represented as a ray op- éi
tical field; hence Ed is given by Equation (2) with the superscripts "i,r" b
replaced by "d" to denote the "diffracted" ray. Then p? and pg become the

caustic distances associated with the diffracted wavefront at some reference

point (Fo) which lies between Q, and P_, as in Figure 2. However, if the
reference position?o is moved back to the caustic at 02, then p? + 0, and

(g now becomes the distance from 02 to PC. Let

o di=
_ . ~Jkwi(r,) i <
i Ere Jod = Ty fap0,) (y .
A0 :

Therefore, the electric field (Ed) at a point PS in the shadow region (see

Figure 1) becomes

N Q.

0 d

ey ~ The,) - ¥(0,,0,)
s 1 1272 ;az;g+sa)

o~Jks . (12a)

f(Q],QZ) is a "dyadic transfer function" which relates the field diffracted

from Q, to the field incident at Q]. This dyadic quantity is expressed as[3,15]
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T(0;,0,) = by, T+ A0, T, (12b)
in which
02 ;
-jkt- [ ap(t')dt!
T ? D*S‘(o) G /dn(o‘) o"s‘(o) (12¢)
= e ’ Cc
; pky P a;rq;y piN2

and t is the geodesic arc length from Q] to 02 on the surface. It is clear
from Equation (12b) that the ray field in Equation (12a) is polarized transverse
to the ray path. It is assumed in Equations (12a;b) that the 82 and 82 com-
ponents of fd propagate independently of each other. The sum in Equation

(12¢) indicates that the surface ray field is actually composed of a set

of surface ray modes as indicated earlier, and p refers to the modal index.

The superscripts s and h in Equations (12b;c) dgnote the acoustic soft and

hard tvpe field contributions, respectively. DE(Q]) are referred to as the '
surface dif—frgction coefgicients which describe tﬁe diffraction at Q].

The forms of DS(O]) and DE(Q?) must be identical via reciprocity. Thg factor

QZ S
_jkt - [ aB(t')dt'

' dn(Q1) Q]
an(sz €
is the ratio of the surface ray field incident at 02 (prior to diffraction

from Q?) to the surface ray field Taunched by the incident field at Q].

This factor is obtained by integrating

a_ dn) ,

V>V

d ? -
i3 {as dn) = - 2(a
h

TV N
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from O to 02, with ag being the intensity of the p~ soft and hard surface

ray field and dt is tne incremental arc length between Q1 and 02' This ex-
pression is based on the assumption that energy is conserved in the surface
ray pencil between Q] and 02’ andsthat the surface ray decays exponentially
-jkt

with an attenuation coefficient og. The factor e denotes the dominant

phase delay of the surface ray field from Q] to QZ'

The form of the solution in Equations (12a;b;c) has been verified via
asymptotic solutions to appropriate canonical problems [3,17]; also, s
these canonical solutions lead to the specific expressions for D and q;

which to first order are given by [?,17]

U m
o () o () e
P B (-a1% 7 EATHER)
(13a;13b)
s . p{_"g e 3 = ( ) e . 14a;14b
% pg( 2 ) * Pg\ 2

The Ai and Ai' denote the Keller type Airy function and it's derivative
[},15] respectively. The values qp and Eb are those for which Ai(-qp) =

and Ai-(-ap) = 0. The values of Ai(-q ) and Ai'(-q ) are given in (9,18].

It is noted that °§ refers to the surface radius of curvature in the ray
direction (i.e., in the S,€ plane). In Equation (12c), the inclusion of

only the first couple of modes (i.e., p=1,2) is sufficient for obtaining
accurate results in the deep shadow region. However, the result in Equations

f12a;h;c) fails at and near the shadow boundary; it also fails near the

caustic at Q?.
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IT1. THE CONSTRUCTION OF A UNIFORM GTD SOLUTION

The GTD solution of Section Il fails at and near the shadow boundary
because the GTD ray optical field description is not valid there. Conse-
quently, one must employ a uniform asymptotic field approximation which remains
valid within the shadow bourdary transition region. A uniform theory must
therefore basically depart from the pure ray optical field approximation
inherent in the GTD in order to correct for the failure of the GTD within
the shadow boundary (SB) transition region; whereas, away from this SB tran-
sition region, it must reduce to the usual GTD solution where the latter

is indeed valid. The precise manner in which a uniform theory accomplishes

oy

such a task differs with each ansatz. While different formulations of uni-
form solutions might even lead to the same answers exactly at the SB, and
also exterior to the SB transition region where they all must reduce to the

GTD solution, their behavior within the transition region may not necessarily

be the same.
As mentioned in Section I, the ansatz employed in this paper is based
on an asymptotic solution given by Pathak [4] for the canonical problem of
plane wave scattering by a smooth, perfectly-conducting convex cylinder.
This ansatz leads to a uniform GTD solution for the general problem of the
scattering of a ray optical electromagnetic field bv a smooth, perfectly-
conductina convex surface of anv shape, such that the solution thus obtained
is convenient and accurate for engineering applications. The starting point
in the development of this general solution is the uniform result given in
Equations (A-1ha;b) of the Appendix, for the far zone fields of a scalar
point source radiating in the presence of an acoustic soft or hard, smooth
convex cylinder. The result in Equations (A-16a;b) is developed in the Ap-
pendix from the uniform asymptotic solution of the canonical problem of }

[4],the latter solution is also summarized in Equations (A-la;b) of the Ap- }

pendix. The reader is referred to the Appendix for details.

16 ]
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First, it is observed that the uniform result in Equations (A-16a;b)

is already in the convenient ray type format; however, the field itself is
not a ray optical field within the SB transition region. The scattered field
in Equations (A-16a;b) propagates along the GO reflected ray path in the

1it region (which also includes the 1it portion of the SB transition reaion),
and it propagates along the surface diffracted ray path in the shadow region
(including the shadowed portion of the SB transition region). This uniform
result properly reduces to the GO soft or hard type rav field solution in

the 1it region which lies outside the SB transition region, and also to the
soft or hard type surface diffracted ray field solution in the shadow region
which lies exterior to the SB transition region. The preceding reduction

to the GTD solution is easily verified by noting that the F and Bs functions
which occur in Equations (A-T6a;b} of the Appendix take the folloaing 1im-
iting values, when the field point moves exterior to the SB transition region:

shadow zones exterior to the SB

(1-F(o)] + 0 ,
transition region.

which is true both, in the 1it and
for o>>0 (
(15)

63
~ + [ s I which is true in the 1it zone
P(8) . -JR J: e , for 8«0 (exterior to the SB transition)
S S q :

h 1 h region.

(16a)




-3 g 3q.e
R 4 N 6 p
PS(S) ._8 e .e 5
P 2[A1'(-qp)] which is true in
& for 8§>>0 (| the shadow zone
5m exterior to the SB
-2 transition region.
T 6
7 N Jp 89
A e e
Ppls) ~ - e
fr P21 2 qp[m(-qp)]
J (16b)

The N in the summation of Equation (16b) is identical to the N in Equation
(12c); it is noted that N=2 generally provides sufficient accuracy when §>>0,
Furthermore, the 1imit of the result in Equation (A-16a) as the field point
approaches SB from the 1it side is identical to the limit of the result in
Equation (A-16b) as the field point approaches SB from the shadow side; thus,
the total field is continuous across SB. It is noted that as the field point

approaches SB:

F(o) ~[ﬁ| -2 e

Also, the limiting value of the field at the SB is more easily evaluated

7] g+ o)
e . for o+0 (0=0 on SB). (17)

if one defines 55(6) in tarms of the related functions p*(8) and g*(§) as

in [4]: h
R p*( §) -jg ‘J%T
PS(G) = e - . (Note that 6=0 at SB). (18)
N q*(6) 2 w8

From the above limiting forms of F(o) and BS(G), one notes that the F(o)

h
term in Equations (A-16a;b) plays a dominant role in the immediate neighbor-

hood of SB, and it is entirely responsible for ensuring the continuity of

18
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the total field at SB. On the other hand the 35(5) term in Equations (A-
16a;b) plays a dominant role as the field pointhmoves far from SB (since
[1-F(c)| > 0), and it is therefore entirely responsible for reducina Equations
(A-16a;b) uniformly to the GTD solution, exterior to the SB transition region,
for the case of the far zone field of a scalar point source radiating in

the presence of an acoustic soft or hard convex cylinder. A more complete
discussion on the role of the functions F and ﬁs is given in Reference [4],

in connection with the development of a uniformhasymptotic solution to the
canonical problem of plane wave scattering by a convex cylinder. It is im-
portant to note that the F function involves a Fresnel integral which is

well tabulated; and Es is a Fock type integral (involving Airy functions)
which is also tabulatld.

It is observed that the GTD solution of Section II, which is a first
order asymptotic solution to terms in inverse powers of kpg, is valid for
cvlindrical, spherical, or any other smooth convex shape. It is also valid
for torsional surface rays in that effects of torsion do not occur explicitly
to first order for the scatterina problem considered here. In addition,
it is observed that a simple relationship exists in the GTD solution between
the vector electromaanetic and the scalar acoustic problems to the given
order of approximation; namely, R and T of the GTD solution in Equations
(5a;b) and (12a;b) are a simple combination of the corresponding scalar or
acoustic (soft and hard} functions RS, and TS for the 1it and shadow regions,
respectively. The last two observat?ons in pegard to the GTD solution in-
cluding it's validity for torsional surface rays have been verified via the
rigorous asymptotic solutions to several canonical problems [3,18]. Based
on these observations and the previous observation that the uniform asymp-

totic result in Equations (A-16a;b) of the Appendix dealing with the far

19




zone field of a point source radiating in the presence of an acoustic soft

or hard convex cylinder is already in a ray format, it is reasonable to con-

i €A A

Jjecture the following in regard to the uniform GTD solution:
(a) The uniform GTD solution for the general electromagnetic problem
of the scattering of a ray optical electromagnetic field incident on

a smooth, perfectly-conducting arbitrary convex surface can also be

: %t expressed in a ray type format like the ordinary GTD solution of Sec-

Y+ o

1‘,‘"'
R P

tion 11 (see Equations (10) and (12a)).

(b) The dyadics R and T in Equations (5a;b) and (12a;b) of the or-

ERTATeS | )

o dinary GTD solution may be replaced by the more general R and T dyadics
for the uniform GTD solution. Of course, R > R must be true in the

1it region outside the SB transition region and R+ T must be true

~ i
R T wip?
.

‘;" in the shadow region outside the SB transition region. Furthermore,
the functional forms of R and T are assumed to be the same for cyl-

indrical, spherical, or anv other convex shape, as is true of the R

and T dyads in the GTD solution.
P (c) The uniform GTD solution for the electromagnetic case may also
hbe simply expressed in terms of the corresponding scalar (or acoustic)

soft and hard cases, respectively, as in the GTD solution [ see Equa-

tions (5a), and (12b)] .

AT .
-

Thus, the form of the uniform GTD solution for *“he total electric

field, E may be expressed via the cani-~ctures in (a) and (b) above, as:

v

i iy 5] T ed -jksT .
E(PL)~E1(PL)+E1(QR).R —— e 3 for P in the (19a)
(of+s") (") 1it region
i = od d
E‘P5)~F (Q")of 5 2 e‘JkS
s (pg+sd) ; for P in the

shadow region. (19b)
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The incident ray field E' is the same as in Equation (2) or (10). From con-
jecture (c) above, one may express R and T in terms of their corresponding

acoustic soft and hard functions as:

A~ -~ A‘i Ar

R=Rg & €& + Ry & & (20)

YT, . (21)

—u
i
—
)
o
o~
o
~n

The results in Equations (19a;b) together with the dvadics in Equations (20)
and (21) are expressed in the same incident, reflected and surface diffracted
ray coordinates as those employed in the GTD solution of Section II. The
subscripts s and h in Equations (20) and (21) refer to the acoustic soft

and hard cases, as before. From Equations (20) and (21), and conjecture

(b) above, an obvious choice of Rs and Tg is directly available from the

h h
acoustic soft or hard solution of Equations (A-16a;b) in the Appendix. Thus,

i -4 -j( L)3/]2 e- .4 L A L
R - j_t.e £ — P_F(x )] + P (F )r , for the lit
2 vt > region

(22)

and T

T = - (tmm m(a) |2 et [1-F(x)) + P (et jdnm‘) e Ikt
AR TS Py~ s dn(Q,) ’

Fwn

for the
shadow region.

(23)
The various parameters occurring in Equations (22) and (23) are thus defined

helow as in Equations (A-11a) through (A-11g) of the Appendix.

S
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Q
- i p (Q ) 3 2 '

i HL=—2m(QR)[T(QR)J 3cose'; f(Qg)=1+ BfTGET cos?p’; gd= 6] dt’ %é%—%y ;
Eﬁ (24a;24b;24c)
;_
B | 1/3 0
i ke,(Q) 2

.,3 m(Q) = [—%—] ; t =(f) dt' (24d;24e)

x .I

— aaian

;:')i.; .

”
296§,

e . d,dy2

L= oopql enc2pi . d_ kL ( ,
A = X -«—-(—5—}- . 24f;24
i X~ = 2kL- cos“®’ 2000, )m(0,) ( 9)

For an electromagnetic spherical wave (or point source) type illumination,

and for the field point in the far zone where s" >>p§,2 and Sd>>pg in Equations

pr Qr j;} pr ’ pd J pd
l ry, r, . ry=~ ] r2 » and d g d, < d2 » the
(o1ts ) oots’) s s (o,*s7) s

"distance" parameters LL andLd

(19a;b) such that

i e (\._,l-" ~v. . < Y ~~envn "~

in Equations (24f;24g) are given for this

d

e special case byl-L = s" and Ld - s~ as in Equations (A-16a;b). It is noted

that sr, sd and pg appearing in Equations (19a;b) correspond to g, S3 and
e in Equations (A-16a;b), respectively. Therefore, in order to complete
the solution in Equations (19a;b) for the general case, one need only specify

. the parameters Lt and Ld. To recapitulate, the general case deals with an .

arbitrary incident rav optical electromagnetic field, an arbitrary convex
surface, and a near zone field point {for which the field point mayfbe sev-
eral wavelengths from the scattering surface, but yet not far in comparison
with the characteristic dimensions of the scatterer). As mentioned previ-

i ously in Section I, the plane, cylindrical, conical and spherical wavefronts
are special cases of the arbitrary auadratic wavefront approximation implied

%, in the ray optical description of the incident field. Recalling that

the role of the F(XL) and F(Xd) functions is to ensure the continuity

22
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b of the total field at SB, one may then evaluate X~ and X~ appearing in

i; | ' xt and Xd, respectively, by actually enforcing the continuity of the

iij total field at SB. This procedure is exactly analogous to that employed
;;: l previously by Kouyoumjian and Pathak [16] in their development of a uniform
% ; ' GTD solution for the diffraction of an arbitrary ray optical electromagnetic
iéz field by an edge in an otherwise smooth surface. Let Pcg denote a field
iigf ; point on SB. The continuity of the total field at SB requires that

?i; lim  E(P) = lim  E(P) , (25)
i1 Pr>Psg PsrPsp

?} : in which f!PL) and f(PS) are given by Equations (19a) and (19b). Employing
‘;" ~ the limiting form of Equation (17) for the F function, and the definition
; given in Equation (18) for the 35 function, into Equations (22) and (23),

allows one to write Equation (25? as:

~ A

3 by . b,) . L — -£ [p*(0) of .
L ) el D
3 ores

" 1
d
("2 ) o-3ks
og+s

E at the SB. (26)

"
]
—_
>
—
e
m
-
—
O
—
S
[}
N
=]
+
3
—
L0
—
St
[ A—
=iro '
1]
[}
PSP
——
o
*
o~
o
g
—————
—d
w|—

With the distance from Q] to PSB defined as s, one obtains.

=5 sd
| S8 sB

=s . (27a;27b)




It is noted that if P*Pcg, then 8lsm/2, Elag, Qg*Qy» P]*0 (see Equation

(7)), ewsny, er>ny, and e,»b,. Likewise, if PsPcy, then £%0, 0,50,

SB?
t»0, 32+ﬁ], and 82+B]. Furthermore, at SB, p£=pg. The functions p*(§)
and g*(§) are continuous everywhere including §=0. Let the incident field
be described by a diverging wavefront in the direction of propagation at

Q] (i.e., at grazing); thus, one may write,

1

i .
~ - - jks
(b‘) (o)) =(a‘(i°)) e °, (28)
o 1 a"(ro) (p1+so)(p2+so)

where s, denotes the distance s' from some reference point at ?0 to the point
0,. The quantities 5;(?0) and 3"(?0) which are the by and n; directed ampli-
tudes of €' at the reference location (?o) are assumed known, It follows

from Equation (28) that

b r T o] -jkls +s
C]> Elipgy) =(al(r0)) ] per 1’ e I (29)
g A CRVAN LI ERD MO ERE D

The incident wave caustic distances o} 2 are measured from the reference

point at Fo to the respective caustic locations. Incorporating Equations

(28) and (29) into (26) yields

L

(pi+S )(pi+s ) s(or+s)
L| dl -1 0 2% 2 " 4t sB. (30)

SB i SB i (p;+[SO+S])(p;+[§O+S]) pg

Since the distance parameter is a slowly varying quantity near SB, and

since (1-F) vanishes sufficiently rapidly as the field point moves
far from SB; it is convenient to use the value in Equation (30) for LL and

d . .
L even away from SB. It is assumed of course in the present development

(as pointed out in Section I), that the field point location and the caustics

24




of the incident wavefront are not in the close vicinity of the surface, and
that the field point itself is not in the neighborhood of any caustics as-
sociated with the incident and scattered rays. Furthermore, it is assumed
that the amplitude of the incident ray optical field does not exhibit a rapid
spatial variation in the vicinity of the points of reflection and diffraction
on the surface. This completes the construction of the uniform GTD solution
in Equations (19a;b) for a diverging wavefront.

If the incident wavefront is of the converging, or converging-diverging

L,d

type, then the parameters [ in Equation (30) can become negative. It

has not been investigated in detail how the general solution can be completed

when LL’d

becomes negative. However, if one of the principal directions
of the incident wavefront coincides with one of the principal planes of the
surface at grazing, then one can treat a converging or converging-diverging

L.d

type wavefront for which <0, by replacing F(XL’d) with F*(lXL’dI). The

* on F*(IXL’dI) denotes the complex conjugate operator. The use of F*(|XL’d|)

when LP’d

<0 leads to a continuous total field at SB in this case, and it's
use may he justified as in the edge diffraction problem [19] via an analytic
continuation procedure to include negative values of XL’d (or LL’d) while
simultaneously satisfying the radiation condition for the scattered field.
Finally, exterior to the SB transition region, the uniform GTD result
of Equations (19a;b) does indeed recover the ordinary GTD result of Equations

(10) and (12a) as may be verified by employing the limiting forms of Equations

(15) and (16a;b) into Equations (22) and (23).
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It is noted that a solution for the SB transition region pertaining
to the same general problem as the one considered here has also been given
by G. James*; however, his solution which is presented without sufficient
details is not uniform in that it does not properly reduce to the GTD solu-
tion exterior to the SB transition region. Furthermore, that solution em-
plovs a "pseudo" ray path for the reflected field in the 1it region; such
a path does not satisfy the generalized Fermat's principle. On the other
hand, as is well known, the GO reflected ray path which is employed in this

paper indeed satisfies the generalized Fermat's principle.

IV.  DISCUSSION AND NUMERICAL RESULTS

A uniform GTD solution has been obtained for the problem of the scat-
tering of a ray optical electromagnetic field by a smooth, perfectly-conducting
convex surface as shown in Figure 1. This result is explicitly given in
Equation (19a) for the 1it region, and in Equation (19b) for the shadow region,
together with the parameters in Equations (20) through (24q), and also Eg-
vation (30). While the behavior across only a single shadow boundary (SB)
is discussed in this paper in connection with the open convex surface of
Figure 1, the present theory can just as easily treat the scattering by a
closed convex surface. Basically, one treats a closed convex surface via
the uniform GTD in the same manner as one would via the ordinary GTD; thus,
the only difference between the two approaches is that the R and T dyads
in the GTD solution are replaced by the more general and more accurate R

and T dyads in the uniferm GTD solution. It is noted of course that the

*G,.L. James, Geometrical Theory of Diffraction for Electromagnetic Waves,

published by Peter Peregrinus Ltd., Southgate House, Stevenage, Herts. SGI

1HQ, England, 1976.
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usual GTD solution fails within the shadow boundary transition regions; where-
as, the uniform GTD solution does not. When a surface of revolution is il-
luminated by a plane wave which is incident along the axis of revolution

of the surface, a caustic of the surface diffracted rays lies on this axis.
The uniform GTD solution fails (as does the usual GTD solution) in the neigh-
borhood of such a caustic. However, if the field point is in the near zone
such that the caustic and the shadow boundary directions are widely sepa-
rated, then one can employ the method of equivalent ring currents to evaluate
the field in the neighborhood of such a caustic. The equivalent currents

in this case are found indirectly from the uniform GTD solution. Such a
procedure will be reported in a separate paper together with another approxi-
mate technique which would yield the field near caustics for the special

case when the caustic and the shadow boundary directions tend to coincide.
The latter special case arises when the field point is near the axis but

in the far zone behind the surface of revolution. The other restrictions

on the uniform GTD solution are mentioned at the end of both, Sections I

and I1I, respectively.

It is interesting to note that the EL of Equation (24a) may be approxi-
mated for convenience by -2 m(QR)cosei (upon arbitrarily setting f']/3(QR)=1)
without affecting the accuracy of the solution. Furthermore, it is
easily verified that the LL»d parameter of fquation (30) simplifies to give

the following:
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f :
%ng . for a 2-D cylindrical wave {i.e., line source),
or an obliquely incident 3-D spherical wave
(i.e., point source) illumination.
d
LL, = <
s, for a plane wave illumination (sb%), (31

In the above expression, s' denotes the distance from the source point to
the point of grazing incidence at Q]. For the cylindrical wave illumination
s' and s are to be interpreted as the distances in the complete 2-D problem.

With LL’d as in Equation (31) for plane, cylindrical, or spherical wave il-

e

lumination, it is easily verified that the uniform GTD result of Equations
(19a;b) satisfies reciprocity. Finally, this uniform GTD solution is simple F
and accurate to use since it is given in terms of the F and Bs type functions
which are tabulated. These important aspects of the present nniform GTD
solution are illustrated below by applying it to several interesting prob- 1
Tems.

Consider an infinitely long circular cylinder of radius (a) as shown
in Figure 6a. The geometrical optics field for this geometry is shown in
Figure fb for an electric dipole (acoustic soft boundary condition) and in
Figure 6c for a magnetic dipole (acoustic hard boundary condition) mounted
parallel to the cylinder axis. As is well known, the geometrical optics
field breaks down near the shadow boundaries. This is readily apparent in
these two figures. Nevertheless, this solution has often been applied to
obtain a result for the scattering from a cylinder. The uniform GTD solu-
tion presented in this paper, however, can be quickly and accurately computed.
The uniform GTD result is compared with the geometrical optics result in

Figures 6b and c. Obviously, a much more complete result for the problem
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Figure 6b. Comparison of the geometrical optics and uniform geometrical
theory of diffraction radiation patterns for an electric dipole
in the presence of an infinitely long circular cylinder with
a =1 and o' = 2:.
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Comparison of the geometrical optics and uniform geometrica)

theory of diffraction radiation patterns for a magnetic dipole in
the presence of an infinitely long circular cylinder
with a=1Xxando' = 22,
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in Figure 6a is obtained using the uniform GTD presented here. The validity

of this result is shown by comparing it with the exact eigenfunction solution.

The exact and the uniform GTD results for the two polarizations are compared
in Figure 7. The agreement is excellent and hence confirms the validity
of the uniform GTD solution.

The next example is of an electric dipole in the presence of a finite
circular cylinder, as illustrated in Figure 8a. Measurements have been made
on this satellite shape by Bach [20] and are used for comparisons with the
calculated results in Figure 8b. The pattern is taken in the x-y plane.

The end caps of the cylinder do not have a large effect in this plane and,
therefore, do not need to be included. Note that the dipole is aligned
parallel to the x axis. This causes the cylinder to be illuminated by a
slowly varving field. The measured and calculated results, however, are
in good agreement within experimental accuracy.

An example of a magnetic dipole in the presence of an elliptic cylinder
is considered next, as illustrated in Figure 9a. The pattern is a conic
cut about the cylinder axis. The dipole is parallel to the cylinder axis.
This could represent a slot mounted near an aircraft fuselage, engine, or
store. The calculated result is compared against a result obtained from
a moment method solution* in Figure 9b. The agreement is very good, again,

verifying the validity of the present solution,

*This solution has been kindly furnished by Dr. N. Wang.
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theory of diffraction radiation
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Figure 8a.

Pl

Geometry of an electric dipole situated 19 c¢cm from the center
of a finite circular cylinder 10 cm in radius and 22 cm long.
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Figure 9a. Geometry for a magnetic dipole situated parallel to the axis
of an infinitely long circular cylinder.
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Figure 9b. Comparison of a moment method and uniform geometrical theory
of diffraction radiation pattern for a magnetic dipole in the
presence of an infinitely long circular cylinder. The pattern

is a conic cut about the cylinder aixs.
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In order to validate this solution in terms of a more complex surface
consider the circular cone configuration illustrated in Figure 10. A half-
wave dipole is located in the near zone of the cone, and the near zone field
is measured as the receiver moves azimuthly around the axis of the cone.

Both a vertical and horizontal dipole are treated with the resulting patterns
shown in Figures 11a and 11b, respectively. In each case the calculated

and measured results are in good agreement. Note that the receiver polari-
zation was aligned with that of the transmitter in both cases.

The last example is used to show a cylinder being illuminated by a
complex wavefront that can be represented in terms of an astigmatic tube
of rays. The source of the astigmatic tube of rays or the quadratic ray
pencil which impinges on the cviinder is the edge diffracted field of a plate
mounted on the cylinder such that the cylinder is not in the shadow boundary
transition region of the edge diffracted fields. The geometry used is il-
lustrated in Figure 12. The antenna is a slot mounted parallel to the cylinder
axis in the center of the plate. The calculated and measured results for
this configuration are shown in Figure 12. There is good agreement between
measured and calculated results, thus confirming the validity of the uniform

GTD solution for a cylinder illuminated by a more general wavefront.
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curve) radiation patterns for an electric dipole mounted paralle
to the y axis of a circular cone.
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APPENDIX
FAR ZONE FIELDS OF A SCALAR POINT SOURCE RADIATING IN
! THE PRESENCE OF A SMOOTH CONVEX CYLINDER

An approximate uniform asymptotic result for the field (52) exterior
to a smooth convex cylinder illuminated by an incident plane wave (ﬁ;) is

presented in Equations (45a) and (44a) of @]. It is repeated here as fol-

lows:
"3 -
- -j%)' o B o -ik,
a,(8) 1)+ () j:e [-FOO) TR (E | o e 2
2y & h {045
g for P in the 1it region. (A-1a)
) U, (P)~u (0 )[f,m(o m(Q,.)Ye
, znn e b j" 20T € f—z
for P in the shadow region. (A-1b)

R I
T

The subscripts "s" and "h" refer to the acoustic soft and hard cases,

o ey T T

respectively; whereas, the subscript 2 refers to the two-dimensional (2-D)

3

%' . nature of the problem. The points P, QR, Qa and Qb in Equations (A-la;b)

; are illustrated in Figure A-1 for the case when 90 = m/2; i.e., for "normal
% incidence"”. Also, the parameters for the lit region are given by
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k";(Q )
! m(QR) =[ 2 R ] s (A-2c)

in which pb(QR) is the radius of curvature of the surface at QR, and
.o 2 A
X' = 2k22cos 6 . (A-2d)

The shadow region parameters are given by

% .. Q,
e= [ REy Ot 5ty { (A-2e;A-2f)
a “a i a
1/3
ks, & kog(t')
_ % , . '
X = En(Q,m(Q,)] m(t') = [—QZ—J . (A-2g;A-2h)

y It is noted from Figure A-1 that s, = s, (for 6, = w2); % = 13(for 90 = 7/2).

. o . 2
F(s) = 2JJ§—GJGJ[ dr 77 ;  for 6>0 (for 8<0, see Section
S

IITI of text). (A-3)
!
B » n
5 - 'ji - ~ 1, for acoustic soft
2 ﬁs(o) . & f dr gvgrz ot . 9 = case
{ h j;_ o QW,(1) %; , for acoustic
. hard case.

fA-4)

The o in (A-4) is positive in the shadow region; whereas, it is negative
in the 1it region. The shadow boundary occurs at o=0. The Fock type Airy

functions V() and W,(1) are defined in [9], such that
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\ The functions F and P are defined by [4] y
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(a) INCIDENT AND REFLECTED RAY R
SYSTEM FOR THE FIELD POINT P
IN THE LUIT ZONE

LAY it
L e Sy vy,

o

§=7.8d = .
z.5,=12-59 =cos 6

(b) SURFACE DIFFRACTED RAY PATH FOR
THE FIELD POINT P IN THE
SHADOW ZONE

Figure A-1. Ray paths associated with the problem of scattering of an
obliquely incident plane wave by a smooth convex cylinder.
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Tt-t3/3

?iV(t) = w](T) - wz(r); w](r) -L [ dte (A-5a;A-5b)

2 Jr o
2
The contour of integration Ty runs from « e'J(Q"/3) to o, and Ty is the complex

conjugate of T,. The functions F(8), p*(o), and g*(g) are plotted in [4];
it is noted that the functions p*(o) and gq*(g) are simply related to ﬁs(g)
and Sh(o), respectively, via the relations given in Equation (18) of Section
ITI.
A solution to the three-dimensional (3-D) problem of the scattering
of an obliquely incident plane wave by a smooth convex cylinder as in Figure
A-1 is directly obtained from the solution in Equations (A-la;b) for the
?-D normal incidence plane wave case via the method of separation of variables.
Let DR represent the total exterior field for the 3-D case, with the
subscript "3" beina emploved to distinquish the 3-D nature of the problem.

Then, DQ satisfies the scalar wave equation,

(v + &%) Ty = 0. (A-F)

This obliquely incident plane wave field u; may be expressed in the form

s . -jk_z k kcose ]
Uy = Gk e 2 ’ ° (A7)
k ksing

where ﬂ;(kt) has the same spatial dependence as 5; in the 2-D result of Eq-
uations (A-la;b) except that the "k" in those equations is now replaced by
"kt". Thus, u;(kt) is the component of the incident field which propagates
transverse to z with a wavenumber kt' One notes that 8, is the angle between
the incident ray direction and the z-axis as in Figure A-1, where the z-axis
is pa 2llel to the generator of the cylinder. The scattered field can also

he split up as in Equation (A-7). Consequently, one may write

48



-jkzz
63 = Jz(kt) e ) (A'B)

where

2
(G Qi =0 5 (R -v -y (A-9)

and 52 or Gz(kt) js the same as in Equations (A-las;b) with the "k" in those
equations replaced by "kt". Thus, E3 is obtained via Equations (A-la;b),

(A-7) and (A-8) as

vt L m ST s W
oI B)~us (Y402 (0,)] -| =+ e = 1-F(X") +P_(£")
3 3 3R gL 2dn gL [ ; 5;+z3sineo

—Jkt1351n90-3k

z
e 2

k]

for P in the 1it region. (A-10a)

Byt Ity e-j% dy & ,.d
u3(P)~u3(Q,) -jm(Qa)m(Qb) e sind I;: 5 [-FXT) +P (£7)
h

t|2fng

-jkts3sineo-3kzz

e
Is3sineo

for P in the shadow region.
(A-10b)
I~ obtaining Equation (A-10a) it is assumed for the sake of convenience that
the origin of the z axis is located at the point of reflection, QR; whereas,
in Equation (A-10b) it is assumed that the origin is at the point of grazing

incidence, Qa' This choice of the origin simply implies that the axial (z)
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separation between the points QR or Qa' and the field point is the distance
“z". Thus, z=z3cose0 in Equation (A-10a) for the 1it zone; whereas, 2=54C089,
in Equation (A-15b) for the shadow zone. It is easily verified that, the |

parameters for the 1it zone are

. i
L. -1/3 i, 1. Pg 2.0, r _ Prcoss
g = -2m(Qp)f cosg ; f=1 + oen cos'8; ot 7sing,
(A-11a;A-11b;A-11¢c)
21 .
L . . cos 9 _ 2. i, =1_ -1_..2 -1 2 .
X = Zkt(z3s1neo) sinze = 2kz3cos 8 Pg = Pr sin“w, + p, cOs“w ;
0
(A-11d;A-11e)
I pE; = p;’coszwo + p;]sinzwo; 62 = 7; Uy = Uy x n.
2.
b
T (A-11;A-11g;A-11h)
The angle of inci